Quasi-quadratic elliptic curve point counting using rigid cohomology

نویسنده

  • Hendrik Hubrechts
چکیده

We present a deterministic algorithm that computes the zeta function of a nonsupersingular elliptic curve E over a finite field with p elements in time quasi-quadratic in n. An older algorithm having the same time complexity uses the canonical lift of E, whereas our algorithm uses rigid cohomology combined with a deformation approach. An implementation in small odd characteristic turns out to give very good results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modular Non-Rigid Calabi-Yau Threefold

We construct an algebraic variety by resolving singularities of a quintic Calabi-Yau threefold. The middle cohomology of the threefold is shown to contain a piece coming from a pair of elliptic surfaces. The resulting quotient is a two-dimensional Galois representation. By using the Lefschetz fixed-point theorem in étale cohomology and counting points on the variety over finite fields, this Gal...

متن کامل

Point Counting on Genus 3 Non Hyperelliptic Curves

We propose an algorithm to compute the Frobenius polynomial of an ordinary non hyperelliptic curve of genus 3 over F2N . The method is a generalization of Mestre’s AGM-algorithm for hyperelliptic curves and leads to a quasi quadratic time algorithm for point counting. The current methods for point counting on curves over finite fields of small characteristic rely essentially on a p-adic approac...

متن کامل

Rigid cohomology and p - adic point counting par

I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.

متن کامل

Rigid cohomology and p - adic point counting par ALAN

I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.

متن کامل

Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology

We describe an algorithm for counting points on an arbitrary hyperelliptic curve over a finite field Fpn of odd characteristic, using Monsky-Washnitzer cohomology to compute a p-adic approximation to the characteristic polynomial of Frobenius. For fixed p, the asymptotic running time for a curve of genus g over Fpn with a rational Weierstrass point is O(g4+ǫn3+ǫ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2009